Algebra 1
Chapter 9 Test Version A Show All Work For Credit!!!

1. $y=x^{2}+4 x+5$

Name: \qquad

Axis of Symmetry: \qquad
Vertex: \qquad
Zeros: \qquad
Opens Up or Down: \qquad
Max or Min: \qquad
Domain: \qquad
Range: \qquad
4. $y=5 x^{2}+19 x-4$

Solve by the Quadratic Formula:
7. $x^{2}+8 x+11=y$
8. $2 x^{2}+4 x-70=y$
9. The height of a fireworks rocket in meters can be approximated by $h(t)=-16 t^{2}+56 t+2$ where h is the height in meters and t is the time in seconds.
a. Find the time it takes the rocket to reach the ground after it has been launched.
b. Find out what the maximum height of the rocket is.
10. The height of a flare can be approximated by the function $h(t)=-16 t^{2}-8 t+120$ where h is the height in feet and t is the time in seconds.
a. Find the time it takes the flare to hit the ground.
b. Find the maximum height of the flare.

Algebra 1
Chapter 9 Test Version A
Show All Work For Credit!!!

Name:

1. $y=x^{2}+4 x+5$

Axis of symmetry: $x=\frac{-b}{2 a} \rightarrow x=\frac{-4}{2}=-2$ vertex

$$
\begin{aligned}
& y=(-2)^{2}+4(-2)+5 \\
& y=4+-8+5 \\
& y=-4+5 \\
& y=1 \rightarrow \text { vertex }:(-2,1)
\end{aligned}
$$

Axis of Symmetry: $\quad \chi=-2$
Vertex: $(-2,1)$
Zeros: \qquad * Find these

Opens Up or Down:_up
Max or Min: Min
Domain: \qquad
Range: \qquad
1
2. $y=-3 x^{2}+6 x+2$

Axis of symmetry: $x=\frac{-b}{2 a} \rightarrow x=\frac{-6}{-6}=1$

$$
\text { vertex: } y=-3(1)^{2}+6(1)+2
$$

$$
y=-3+6+2
$$

$$
y=5 \rightarrow \text { vertex }(1,5)
$$

$$
x=-\frac{6 \pm \sqrt{(6)^{2}-4(-3)(2)}}{-6}=\sqrt{36+24}=\sqrt{60}=\sqrt{4}=\sqrt{15}
$$

$$
x=\frac{-6}{-6} \pm \frac{2 \sqrt{15}}{-6} \Rightarrow x=1 \pm \frac{\sqrt{15}}{-3}
$$

Axis of Symmetry: $\quad \chi=1$
Vertex: $(1,5)$
Zeros: $\underline{\chi}=1 \pm-\frac{\sqrt{15}}{3}$ *Find These Last!!!
Opens Up or Down: Down
Max or Min: Max
Domain: $(+\infty,-\infty)$
Range: - $y \leqslant 5$
4. $y=5 x^{2}+19 x-4 \rightarrow 0=5 x^{2}+19 x-4$
3. $y=x^{2}+16 x+15$

$$
0=x^{2}+16 x+15
$$

$$
\begin{array}{rl}
19 / 20 / 10 & =5 x^{2}+20 x-x-4 \\
0 & =(5 x-x)+(20 x-4) \\
0 & =x(5 x-1)+4(5 x-1) \\
0 & =(x+4)(5 x-1) \\
x+4=0 & 5 x-1=0 \\
x-4 & x+1 \\
x & =-4 \quad x=1 / 5
\end{array}
$$

Solve by Completing the Square:

$$
y=x^{2}-4 x-6
$$

$$
\text { 6. } 4 x^{2}-7 x-2=y
$$

$\frac{\text { Solve by the Quadratic Formula: }}{7 x^{2}+8 x+11-y \quad a=1 \quad b=0}=11=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a_{8} x^{2}}$
7. $x^{2}+8 x+11=y \quad a=1, b=8, c=11$

$\sqrt{16+560}=\sqrt{576}=242(2)$

$$
x=\frac{-4 \pm 24}{4} \rightarrow x=\frac{-4}{4} \pm \frac{24}{4}
$$

8. $2 x^{2}+4 x-70=y \quad x=-4+\sqrt{(4)^{2}-4(2)(-70)}$
$\sqrt{16+560}=\sqrt{576}=24$

$$
x=-1 \pm 6 \rightarrow x=5, x=-7
$$

$$
\begin{gathered}
x=\frac{-8 \pm 2 \sqrt{5}}{2} \rightarrow x=\frac{-8}{2} \pm \frac{2 \sqrt{5}}{2} \\
x=-4 \pm \sqrt{5}
\end{gathered}
$$

9. The height of a fireworks rocket in meters can be approximated by $h(t)=-16 t^{2}+56 t+2$ where h is the height in meters and t is the time in seconds.
a. Find the time it takes the rocket to reach the ground after it has been launched. 3.54 seconds
$\left.\begin{array}{l}\text { b. Find out what the maximum height of the rocket is. } 51 \text { feet } \\ a, 0=-16 t^{2}+56 t+2 \text { It takes the rocket } 3.54\end{array}\right\} x=\frac{-b}{2 a} \Rightarrow x=\frac{-56}{-32} \Rightarrow x=1.75 .7$ a. $\left.\begin{array}{rl}0 & =-16 t^{2}+56 t+2 \\ 0 & =-2\left(8 t^{2}-28 t-1\right)\end{array} \begin{array}{l}\text { It takes the rocket } 3.54 \\ \text { seconds to reach the ground }\end{array}\right\} \begin{aligned} & 2 a \\ & n(1.75)=-16(1.75)^{2}+52(1.75)+2\end{aligned}$

$$
x=\frac{-56 \pm \sqrt{(56)^{2}-4(-16)(2)}}{-22}=
$$

$$
h(1.75)=-49+98+2
$$

factor suse formula

$$
x=\frac{-56 \pm 57.13}{-32} \Rightarrow x=-0.04, x=3.54
$$

10. The height of a flare can be approximated by the function $h(t)=-16 t^{2}-8 t+120$ where h is the height in feet and t is the time in seconds.
a. Find the time it takes the flare to hit the ground. 2.5 seconds
b. Find the maximum height of the flare. 121 feet
$0=-16 t^{2}-8 t+120$
$\left.0=-832 t^{2}+t-15\right)$
$+6 / 1 /-5$

$$
\begin{aligned}
& \left(2 t^{2}+6 t\right)+(-5 t-15) \\
& 2 t(t+3)+-5(t+3) \\
& -8(2 t-5)(t+3)=0
\end{aligned}
$$

$2 t-5=0, t+3=0 \Rightarrow t=\frac{5}{2}, t=-3$

$$
\begin{aligned}
& y=-16(-.25)^{2}-8(-0.25)+120 \text { it is launched } \\
& y=-1+2+120 \quad \text { Therefore, the answer } \\
& y=121
\end{aligned}
$$

