Solve the following (show all of your work)
6. 10 minutes $=600$ seconds

$$
\frac{1 \min }{60 \operatorname{secs} \times 10}=\frac{10 \mathrm{~min}}{600 \operatorname{secs}}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { 7. } \left.\left.10 \text { days }=\frac{864,000}{=} \text { seconds }{ }^{*} \frac{1 \text { day }}{? \text { secs }}\right) \frac{1 \text { day }}{24 \text { phys }} \times \frac{1 \text { hr }}{60 \text { mini }} \times \frac{1 \text { orin }}{60 \sec } \times \frac{1 \text { day }}{86400}\right\}
\end{array} \\
& \frac{1 \text { day } \times 10}{86400 \sec \times 10}=\frac{10 \text { days }}{864000 \sec 5}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1 \text { min }}{0.000714 \text { days } \times 16} \times \frac{16 \mathrm{mins}}{0.011424} \\
& 0.011424 \text { days. }
\end{aligned}
$$

9. On your last birthday, how many seconds had you already lived?

$$
\begin{aligned}
& 27 \text { years }=\underline{851,472,000} \text { seconds }\left(\frac{* 1 \text { yr }}{? \text { ? secs }}\right. \\
& \frac{1 y r}{? \sec 5} \rightarrow \frac{1 y r}{365 \operatorname{dag} 5} \times \frac{1 \text { darg }}{24 \text { hrs }} \times \frac{1 \text { hr }}{60 \mathrm{~min}} \times \frac{1 \text { min }}{60 \operatorname{secs}} \cdot \underbrace{\frac{1 y r}{31,536,000 \operatorname{secs}}} \\
& \frac{1 \text { yr }}{31,536,000 \times 27} \times 2 \rightarrow \frac{27 \text { years }}{851,472,000 \operatorname{secs}}
\end{aligned}
$$

