\qquad
Assignment - Dimensional Analysis (Distance)

Solve the following (show all of your work)

1. 3 yards $=$ \qquad 9 feet

$$
\frac{3 \text { yards }}{1} \times \frac{3 \text { feet }}{1 \text { yards }}=9 \text { feet }
$$

$$
\begin{aligned}
& \text { 2. } 1 \text { mile }=63,360 \text { inches } \\
& \frac{1 \text { nate }}{1} \times \frac{1,760 \text { yous }}{1 \text { mite }} \times \frac{3 \text { feet }}{1 \text { yids }} \times \frac{12 \text { inches }}{1 \text { feet }}=\frac{(1,760)(3)(12) \text { inches }}{63,360 \text { inches }}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 3. } 100 \text { feet }=0.019 \text { miles } \\
& \frac{100 \text { feet }}{1} \times \frac{1 \text { yrds }}{3 \text { feet }} \times \frac{1 \text { mile }}{1,760 \text { yets }}=\frac{100}{(3)(1,760)} \text { mites } \\
& 0.019 \text { miles }
\end{aligned}
$$

4. 12 yards $=$ \qquad inches

$$
\frac{12 \text { yards }}{1} \times \frac{3 \text { feet }}{1 \text { yeas }} \times \frac{12 \text { inches }}{1 \text { feet }}=(12)(3)(12) \text { inches }
$$

$$
432 \text { inches }
$$

5.24 yards $=0.0136$ miles

$$
\begin{array}{r}
\frac{24 \text { yards }}{1} \times \frac{1 \text { miles }}{1,760 \text { yids }}=\frac{24}{1,760} \text { miles } \\
0.0136 \text { miles }
\end{array}
$$

6. 72 inches $=$ \qquad yards

72 inches

$$
\begin{array}{r}
\frac{2 \text { inches }}{1} \times \frac{1 \text { foot }}{12 \text { indues }} \times \frac{1 \text { yod }}{3 \text { feet }}=\frac{72}{(12)(3)} \text { yards } \\
2 \text { yards }
\end{array}
$$

7. $21 / 2$ miles $=13,200$ feet

$$
\frac{2.5 \text { mites }}{1} \times \frac{1,760 \text { yids }}{1 \text { mite }} \times \frac{3 \text { feet }}{1 \text { yids }}=\frac{(2.5)(1,760)(3) \text { feet }}{13,200 \text { feet }}
$$

8. Johnny is on the football team at HHS. During the homecoming game, Johnny catches the opening kickoff on his own goal line. He then runs the ball all the way for a touchdown. How many inches did he run?
Hint: football field is $\mathbf{1 0 0}$ yards

$$
\frac{100 \text { yards }}{1} \times \frac{3 \text { feet }}{1 \text { yeas }} \times \frac{12 \text { inches }}{1 \text { foot }}=\frac{(100)(3)(12) \text { inches }}{3,600 \text { inches }}
$$

Johnny ran 3,600 inches.

