Final Review Key

Thursday, May 29, 2014 7:56 PM

Algebra 1 Final Review, spring 2014

Name _____

Show all work to receive full credit. Good luck!

For numbers 1-2, simplify the expressions

1.
$$-3^{2} - 4 \cdot 2 + (6 + 4 + 2)$$

 $-9 - 4 \cdot 2 + 8$
 $-9 - 8 + 8$
 $-17 + 8$
 -9

2.
$$2(3x+7) - 4(7x-2) + 3x$$

 $6x + 14 - 28x + 8 + 3x$
 $6x - 28x + 3x + 14 + 8$
 $-22x + 3x + 14 + 8$
 $-19x + 22$

For numbers 3-8, solve the equations

3.
$$4x - 2 = 22$$
 $4x - 2 = 22$
 $4x - 2 = 24$
 $4x - 2 = 24$

$$43 \cdot \frac{2x+7}{3} = 9 \cdot 3$$

$$2x+7 = 27$$

$$-7$$

$$2x + 20$$

$$x + 10$$

For numbers 9-10, graph the linear equations

9.
$$y = \frac{5}{2}x - 6$$

$$M = \frac{5}{2}$$

10.
$$y = -3x$$

$$M = -\frac{3}{1}$$

For numbers 11-14, identify the slope and y-intercept of the linear equations

11.
$$y = -2x + 4$$

$$m = -2$$

12.
$$y = -5$$

13.
$$y = -\frac{1}{3}x$$

14.
$$3x - 3y = -12$$

 $-3x$
 $-3y = -3x - 12$
 $-3y = -3x - 12$
 $-3x - 3x - 12$

For numbers 15-18, write the equation of the line in slope-intercept form using the given information

15. Slope:
$$-\frac{3}{2}$$

15. Slope:
$$-\frac{3}{2}$$
 $y = -\frac{3}{2} \times +2$

16. Slope: 4
Passes through the point: (-2, -13)

(2)
$$y = m_{X+b}$$

(-2) $\frac{4}{3}$ (3) +1

For numbers 19-20, solve the inequality, then graph the solution range on the number line

For numbers 21-24, solve the system of linear equations

$$-21(x+y=4) 2x-3y=13 + -2x-3y+13$$

22.
$$y = \frac{2x - 3}{3x - 2y} = 10$$

 $3x - 4x + 6 = 10$
 $-x + 6 = 10$

23.
$$-5x + 3y = 11$$

$$5(x - 2y = 2)$$

$$x - \lambda y = \lambda$$

$$x - \lambda (-3) \neq \lambda$$

$$x + b = \lambda$$

$$x = -4$$

$$x = -4$$

25. Graph the linear inequality

26. **Graph** the system of linear inequalities

$$y \le -2x + 6$$

$$x > -5$$

For numbers 27-28, find the zeroes of the quadratic function by factoring

$$28. 0 = 2x^{2} + 5x - 12$$

$$0 = 2x^{2} + 8x - 3x - 12$$

$$0 = (2x^{2} + 8x) + (-3x - 12)$$

$$0 = (2x^{2} + 8x) + (-3x - 12)$$

$$0 = 2x (x + 4) - 3 (x + 4)$$

$$-24 = 0$$

$$0 = (2x - 3) (x + 4)$$

$$-3 = 2x - 3 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

$$-4 = 0$$

For numbers 33-36, simplify using only positive exponents

33.
$$(3x + 2)(x - 6)$$

34. $(x - 3)^{2}$
 $(x - 3)(x - 3)^{2}$

Use the given senario to answer questions 37-40. You have a bag of marbles. There are 5 red, 3 blue, 6 green, and 2 black marbles.

37. What is the probability of choosing a red marble at random from the bag?

5 red Total = 16

38. What is the probability of choosing a black marble or a green marble at random from the bag?

Prob (black exgreen)
$$\frac{2}{16} + \frac{6}{16} = \sqrt{\frac{8}{16}} = \frac{1}{2}$$

39. What is the probability of picking a blue marble, setting it aside, and then picking another blue marble?

$$\frac{2}{15} = \frac{6}{240} = \frac{1}{40}$$

40. What is the probability of picking a white marble out of the bag at random?

white = 0

Probability (white) =
$$\left[\frac{0}{16} = 0\right]$$

41. Fair Problem: It costs \$12 for admission into the fair. It costs \$3 per ride. (a) How much wil it cost (total) to ride on three rides? (b) How much would it cost to go on x number of rides? (c) If you had \$42 to spend at the fair, how many rides could you go on?

a. C= 12+3(3) =12+9=121

42. Archery: Katniss Everdeen wants to know if she can shoot an aarow over the top of a tree. The equation of the arrow's height after t seconds can be modled with this equation $h = -16t^2 + 64t + 3$. If the tree is 66 feet tall, wil Katniss be able to clear the top of the tree? * Need to know the max height

OX= == ==

 $X = \frac{-b}{\lambda^{2}}$ $X = -\frac{(b4)}{\lambda^{2}}$ $h = -1b(\frac{\lambda}{4}) + 64(\frac{\lambda}{4}) + 3$ h = -16(4) + 12.8 + 3

max hight = 67 feet

Since the free is 66 feet tall, and the maximum height of the aarow is 67ft, yes, she will clear the hour the free

43. Baseball game: Mr Marcus went to the Giant's game. While he was there, he bought a soda and an order of garlic fries and spent \$14. Later that night, he went back and ordered a soda and two orders of garlic fries and spent \$22. How much did each soda cost Mr Marcus at the game? S= price of sode

g = price of garlic fives

1 s + 1 9 = 14

Each soda cost \$6

44. T-shirt Business: The HHS leadership class is considering purchasing a printing machine for \$3,500 It would cost the class \$4 to make each shirt, and they can sell them for \$10 each. How mnay shirts would they need to sell to cover the cost of purchasing the machine? X = # of shirts sold

3,500 = (10-4). X we make \$6 off of

3,500 = 6.x

each shirt

They would need to sell 584 shirts in order

to cover the cost of the markine