Simple Probability

Monday, May 5, 2014 7:26 AM

SIMPLE PROBABILITY is the likelihood that a specific event will occur, represented by a number between 0 and 1.

There are two categories of simple probabilities.

THEORETICAL PROBABILITY is calculated probability. If every event is equally likely, it is the ratio of the number of ways the event can occur to the total number of possible outcomes.

theoretical probability =
$$\frac{\text{number of ways to get want you want}}{\text{total number of possible outcomes}}$$

EXPERIMENTAL PROBABILITY is the probability based on data collected in experiments.

$$experimental probability = \frac{number of times the event occurred}{total number of outcomes}$$

Example 1

There are three pink pencils two blue pencils, and one green pencil. If one pencil is picked randomly, what is the theoretical probability it will be blue?

of possible successes

total # of possibilities
$$\frac{2}{3+2+1} = \frac{2}{6} = \boxed{\frac{1}{3}}$$

Example 2

Jayson rolled a die twelve times. He noticed that three of his rolls were fours.

a. What is the theoretical probability of rolling a four?

b. What is the experimental probability of rolling a four? There were three fours in twelve rolls. The experimental probability is:

There were three fours in twelve rolls. The experimental probability is:

$$\frac{3}{12} = \frac{1}{4}$$

Example 3

On the spinner, what is the probability of spinning an A or a B?

$$\frac{2}{4} = \frac{1}{2}$$

Example 4

What is the probability of spinning red or white?

$$P(red) = \frac{1}{3}$$

$$P(red \text{ or white})$$

$$P(white) = \frac{1}{4}$$

$$\frac{1 \times 4}{3 \times 4} + \frac{1 \times 3}{4 \times 3}$$

$$\frac{4}{12} + \frac{3}{12} = \boxed{7}$$

$$\boxed{1}$$

$$\boxed{2}$$

$$\boxed{1}$$

$$\boxed{2}$$

$$\boxed{1}$$

$$\boxed{3}$$

$$\boxed{4}$$

$$\boxed{1}$$

$$\boxed{1}$$

$$\boxed{1}$$

$$\boxed{2}$$

$$\boxed{3}$$

$$\boxed{4}$$

$$\boxed{1}$$

$$\boxed{2}$$

$$\boxed{3}$$

$$\boxed{4}$$

$$\boxed{1}$$

$$\boxed{2}$$

$$\boxed{3}$$

$$\boxed{4}$$

$$\boxed{1}$$

$$\boxed{3}$$

$$\boxed{4}$$

$$\boxed{1}$$

$$\boxed{2}$$

$$\boxed{3}$$

$$\boxed{4}$$

$$\boxed{3}$$

$$\boxed{4}$$

$$\boxed{3}$$

$$\boxed{4}$$

$$\boxed{3}$$

$$\boxed{4}$$

$$\boxed{4}$$

$$\boxed{3}$$

$$\boxed{4}$$

$$\boxed{4}$$